-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
↳ QTRS
↳ DependencyPairsProof
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(x, y)
Used ordering: Polynomial interpretation [21]:
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
POL(-2(x1, x2)) = 3 + x1 + 2·x1·x2 + x2
POL(-12(x1, x2)) = x1 + 3·x1·x2 + 2·x2
POL(neg1(x1)) = 2·x1
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -12(-2(x, y), -2(x, y))
POL(-2(x1, x2)) = x1·x2
POL(-12(x1, x2)) = x1·x2
POL(neg1(x1)) = 1 + 2·x1
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
-2(-2(neg1(x), neg1(x)), -2(neg1(y), neg1(y))) -> -2(-2(x, y), -2(x, y))